Как Рассчитать Процент

Как посчитать проценты в Excel

Как Рассчитать Процент

Почти в каждой сфере деятельности мы сталкиваемся с необходимостью уметь считать проценты. Чаще всего навыки вычисления процентов нам нужны при расчете НДС, маржи, наценки, процентов по кредиту, доходности вкладов и ценных бумаг, скидок. Все эти вычисления производятся как подсчет процента от суммы.

Кликните по кнопке ниже для загрузки Excel файла с примерами расчетов процентов в Excel:

Что такое процент?

Проце́нт (лат. per cent — на сотню) — одна сотая часть. Отмечается знаком «%». Обозначает долю чего-либо по отношению к целому. Например, 25 % от 500 руб. означает 25 частей по 5 руб. каждая, то есть 125 руб.

Базовая формула расчета процента от суммы выглядит так:

(Часть/Целое) * 100 =  Процент (%)

Не существует универсальной формулы, подходящей для каждого сценария расчета процентов. Ниже вы узнаете о самых популярных способах расчета.

урок:

Базово, рассчитать процент от суммы в Эксель можно по формуле:

(Часть/Целое) * 100 =  Процент (%)

Но если использовать формат ячейки “Процентный”, то для вычисления процента от числа достаточно поделить одно число на другое. Например, у нас есть яблоки, которые мы купили по 100 руб. на оптовом складе, а розничную цену выставим 150 руб. Для того чтобы высчитать процент того, сколько составляет закупочная цена от розничной, нам потребуется:

  • Составить таблицу с ценами и добавить колонку для вычисления величины процента:
  • В ячейку D2 внести формулу, вычисляющую процент цены закупки от цены продажи:

=C2/B2

  • Применить формат ячейки D2 “Процентный”:

урок:

Представим, что у нас есть список продавцов с объемом продаж по каждому и общей суммой всех продаж по всем продавцам. Наша задача определить, какой процент составляет вклад каждого продавца в итоговый оборот:

Для этого нам нужно:

  • Добавить колонку к таблице с расчетом процента;
  • В ячейку C2 вставить формулу:

=B2/$B$9

Значки $ фиксируют колонку “B” и ячейку “9” для того, чтобы при протягивании формулы на все строки таблицы, Excel автоматически подставлял объем продаж каждого продавца и высчитывал % от общего объема продаж. Если не поставить значки “$”, то при протягивании формулы, система будет смещать ячейку B9 на столько ячеек вниз, на сколько вы протяните формулу.

  • Протянуть формулу на все ячейки таблицы, соответствующие строкам с фамилиями продавцов:
  • На примере выше мы протянули формулу и получили значения в виде дробных чисел. Для того чтобы перевести полученные данные в проценты выделите данные левой клавишей мыши и смените формат ячеек на “Процентный”:

Как работает эта формула?

Для расчетов мы используем формулу СУММЕСЛИ. Эта функция возвращает сумму чисел, указанных в качестве аргументов и отвечающих заданным в формуле критериям.

Синтаксис функции СУММЕСЛИ:

=СУММЕСЛИ(диапазон; условие; [диапазон_суммирования])

  • диапазон – диапазон ячеек, по которым оцениваются критерии. Аргументом могут быть числа, текст, массивы или ссылки, содержащие числа;
  • условие – критерии, которые проверяются по указанному диапазону ячеек и определяют, какие ячейки суммировать;
  • диапазон_суммирования – суммируемые ячейки. Если этот аргумент не указан, то функция использует аргумент диапазон в качестве диапазон_суммирования.

Таким образом, в формуле =СУММЕСЛИ($A$2:$A$8;$E$1;$B$2:$B$8)/B9 мы указали “$A$2:$A$8” как диапазон товаров, среди которых функция будет искать нужный нам критерий (Помидоры).

Ячейка “$E$1” указана в качестве критерия и указывает что мы ищем “Помидоры”.

Диапазон ячеек “$B$2:$B$8” обозначает какие ячейки нужно суммировать, в случае если искомый критерий был найден.

Как посчитать разницу в процентах в Excel

При расчетах в Excel часто требуется посчитать разницу в процентах между двумя числами.

Например, для расчета разницы в процентах между двумя числами А и В используется формула:

(B-A)/A = Разница между двумя числами в процентах

На практике, при использовании этой формулы важно определить какое из нужных вам чисел является “А”, а какое “В”. Например, представим что вчера у вас было в наличии 8 яблок, а сегодня стало 10 яблок.

Внимание!

Таким образом количество яблок относительно вчерашнего у вас изменилось на 25% в большую сторону.

В том случае, если у вас вчера было 10 яблок, а сегодня стало 8 яблок, то количество яблок, относительно вчерашнего дня сократилось на 20%.

Таким образом, формула, позволяющая корректно вычислить изменения в процентах между двумя числами выглядит так:

(Новое значение – Старое значение) / Старое значение = Разница в процентах между двумя числами Ниже, на примерах, мы разберем как использовать эту формулу для вычислений.

Как найти процент между двумя числами из двух строк в Excel

В том случае, если у нас есть список в котором в каждой строке указан период с данными продаж и нам нужно вычислить изменения от периода к периоду, то нам потребуется формула:

Интересное:  Как Работает Банк Ренессанс

=(B3-B2)/B2

Где B2 это первая строчка, B3 вторая строчка с данными. После ввода формулы не забудьте отформатировать ячейки с вычислениями как “Процентные”. Выполнив все выше описанные действия, вы получите результат:

Если у вас есть необходимость вычислить изменения относительно какой-то конкретной ячейки, то важно зафиксировать ее значками “$”. Например, если перед нами стоит задача вычислить изменения объема продаж относительно Января, то формула будет такой:

=(B3-B2)/$B$2

На примере выше значения продаж каждого месяца сравниваются с данными продаж Января.

Как прибавить/вычесть процент к числу в Excel

При расчетах может понадобиться прибавить к какому-либо числу процент. Например, представим, что мы планируем расходы на отпуск. Для того чтобы рассчитать необходимую сумму денег на неделю отпуска, мы закладываем, что в отпуске будем тратить 30% больше чем в обычную рабочую неделю. Для такого расчета нам потребуется формула:

= Число * (1 + %)

Например, мы хотим прибавить к числу “100” двадцать процентов, тогда формула будет следующая:

=100 * (100 + 20%) = 120

Если задача стоит вычесть 20% от числа “100”, то формула выглядит так:

=100 * (100 – 20%) = 80

Вернемся к нашей задаче. Запланируем, что на неделю отпуска мы будем тратить на 30% больше чем в регулярную неделю, а неделю после отпуска будем экономить и тратить на 30% меньше чем в неделю до отпуска. Тогда расчет нашего бюджета будет выглядеть так:

Источник: https://excelhack.ru/kak-poschitat-procenty-v-excel/

Как можно найти проценты от любого числа?

Краткое содержание статьи:

В данной статье мы опишем, как найти процент от числа, долю одного числа от другого. Где-то классе в пятом, на занимательных уроках математики дети начинают изучать такую тему как «проценты». Тогда для любителей посчитать открывается увлекательный мир процентных соотношений и дробных чисел.

Учителя дают для решения почтенное количество любопытных, увлекательных задач на определение процентов.

Но в школьные годы дети думают, что им не обязательно пригодятся эти знания, а зря! Ведь эта тема всегда актуальна, тесно связана с повседневной жизнью и вполне может пригодиться в различных жизненных ситуациях.

Для чего важно уметь находить проценты от чисел

Уметь просчитывать проценты необходимо, однозначно, каждому. Вы спросите — почему? Просто любой человек практически ежедневно сталкивается с ценами на товары и услуги в тех или иных предприятиях и заведениях.

Почти каждый второй имеет кредит, рассрочку, у многих есть сберегательные вклады в банках, и, возможно, даже не в одном. Налоги, страховка, покупки — в нашем мире почти везде задействованы проценты. Эта тема касается как финансовой, экономической так и других сфер нашей жизни.

Но при решении детских задач из учебников 5-6 классов нет столько подводных камней, как при расчете взрослого кредита.

В школьной программе есть 3 закономерности для решения задач в процентах:

  1. нахождение процента от числа;

  2. нахождение процентного соотношения чисел

  3. нахождение самого числа исходя из его же процента.

Не стоит забывать о том, что вычисление процентов очень часто используются в обыденности. Примером этого служит применение их в расчетах бюджета вашей семьи. Многие семьи берут кредиты такие как: «Автокредит», «Потребительский кредит», «Кредит на образование» ну и конечно же « Жилищный кредит», имеющий так же другое, более привычное нам название — «Ипотека».

Как обозначается процент от числа

Известно, что процент обозначается значком «%». Используют разные определения термина.

  • Первое, известное всем: процент, это одна сотая часть числа.
  • Второе – это плата, взимаемая банком или иными лицами, выдающими финансовые средства в кредит, за их пользование. Это понятие крайне часто встречается людям в повседневной жизни.

Процента от числа — история происхождения понятия

Мало кто задумывался, откуда взялся этот термин. А ведь слово «процент» родом из Римской империи. Слово «pro centum» мало о чем Вам может рассказать. А ведь буквальное его обозначение означает «со ста» или же «за сотню».

Сама идея выражать части целого в множестве равных долей родилась давным-давно еще в древнем Вавилоне. Тогда люди использовали шестидесятеричные дроби при своих расчетах.

Люди жившие в Вавилоне оставили нам «на память» реестры, по которым рассчитывали проценты для подсчета суммы долга, «набежавшей» по процентам у заемщика.

Проценты имели огромную известность еще в Других государствах Древности. Люди, знающие точную науку математику, в Индии высчитывали проценты по тройному правилу использовали при своих расчетах пропорции.

Римляне же, например, были профессионалами этой сферы, ведь они называли процентом те деньги, который неплательщик вынужден вернуть тому, кто их выдал, причем за каждую сотню.

Еще тогда Парламент Рима принял максимум допустимого процента, который брали с должника, потому как бывали случаи, когда заимодатели чрезмерно старались получить свои процентные деньги. И именно от Римлян понятие процентов перешло ко всем остальным народам.

Кому нужно знать — как считать проценты?

  • Бухгалтер. Ему просто необходимо знать, как считать проценты. В любой компании, на любой работе, есть человек занимающийся начислением заработной платы. Рассчитывающий, вычитающий, умножающий ваши кровные, заработанные честным трудом, деньги. Кто это? Конечно бухгалтер. Например, он занимается вычетом процента от заработной платы. Этим процентом является налог, который на данный момент составляет 13% от дохода.
  • Банковский служащий.Ему тоже просто необходимо знание процента. Для чего? Да потому что именно этот сотрудник занимается кредитами, ипотеками, финансовыми вложениями. Он рассчитывает то, куда уходят деньги людей. Предоставляет информацию о том, сколько человек переплатит или получит в процессе сделки с банком.
  • Окулист. Врач, осматривающий глазное дно, изучающий то, насколько хорошо человек видит. Он определяет зрение. Он выпишет очки. Но со зрением, как и с очками, не все так просто – все мы индивидуальны, соответственно и зрение у нас разное. У кого то +(-) 1, а у кого то +(-) 0,75. И окулист как никто другой, знает толк в этом. И понять ему это дает не только образование, но и знание процентного соотношения.
Интересное:  Счет На Картотеке Что Это

Применение нахождения процентов в разных областях

Финансовое. Тут все элементарно – это та самая сумма, которую кредитозаемщик платит кредитору за то, что второй предоставил первому денежные средства во временное пользование. При этом условия выдачи оба лица оговаривают предварительно и индивидуально, закрепив финансовые отношения документально.

Лексика бизнеса. В бизнесе есть такое понятие – «работать за проценты». Означает это то, что человек готов работать и получать вознаграждение которое исчисляют из прибыли и оборота предприятия.

Источник: http://1-vopros.ru/91-kak-najti-procent-ot-chisla.html

Процент

Процент (что означает «на сотню») это сравнение с 100.

Символ процента %. Так, например, 5 процентов записывается как 5%.

Предположим, что в комнате 4 человека.

50% это половина — 2 человека.25% это четверть — 1 человек.0% это ничего — 0 человек.100% это целое — все 4 человека в комнате.

Если в комнату заходят ещё 4 человека, то их колличество становится 200%.

1% это $\frac{1}{100}$
Если всего есть 100 человек, то 1% из них это один человек.

Чтобы выразить математически число X как процент от Y вы делаете следующее:
$X : Y \times 100 = \frac{X}{Y} \times 100$

Пример: Сколько процентов от 160 составляет 80?

Решение:

$\frac{80}{160} \times 100 = 50\%$

Увеличение/Уменьшение процентного соотношения

Когда число увеличивается относительно другого числа, то величина увеличения представляется как:

Увеличение = Новое число — Старое число

Однако, когда число уменьшается относительно другого числа, то эту величину можно представить как:

Уменьшение = Старое число — Новое число

Увеличение или уменьшение числа всегда выражается на основании старого числа.
Поэтому:

%Увеличение = 100 ⋅ (Новое число — Старое число) ÷ Старое число

%Уменьшение = 100 ⋅ (Старое число — Новое число) ÷ Старое число

Важное!

Например, у Вас было 80 почтовых марок и Вы начали в этом месяце собирать ещё пока общее количество почтовых марок достигло 120. Процентное увеличение числа марок, которые у Вас есть равно

$\frac{120 — 80}{80} \times 100 = 50\%$

Когда у Вас стало 120 марок, Вы и Ваш друг договорились обменять игру «Lego» на несколько из этих марок. Ваш друг взял несколько марок, которые ему понравились, и когда Вы подсчитали оставшиеся марки, то обнаружили, что у Вас осталось 100 марок. Процентное уменьшение числа марок может быть подсчитано как:

$\frac{120 — 100}{120} \times 100 = 16,67\%$

Калькулятор Процентов

Есть два способа, как процентные соотношения помогают в решении наших каждодневных проблем:

1. Мы сравниваем две разных величины, когда все величины соотносятся с одной и той же основной величиной равной 100. Чтобы объяснить это, давайте рассмотрим следующий пример:

Пример: Том открыл новую бакалейную лавку. За первый месяц он купил бакалеи за \$650 и продал за \$800, а во втором купил за \$800 и продал за \$1200. Надо рассчитать делает ли Том больше прибыли или нет.

Решение:

Напрямую из этих чисел мы не можем сказать растёт доход Тома или нет, потому что расходы и выручка каждый месяц разные. Для того, чтобы решить эту задачу, нам нужно соотнести все значения к фиксированной основной величине равной 100. Давайте выразим процентное соотношение его доходов к расходам в первый месяц:

(800 — 650) ÷ 650 ⋅ 100 = 23,08%

Это значит, что если Том тратил \$100, то он делал прибыль в размере 23.08 в первый месяц.

Теперь давайте применим тоже самое ко второму месяцу:

(1200 — 800) ÷ 800 ⋅ 100 = 50%

Так, во втором месяце, если Том тратил \$100, то его доход был \$50(потому что \$100⋅50% = \$100⋅50÷100=\$50). Теперь понятно,что доходы Тома растут.

2. Мы можем определять количество части большей величины, если известно процентное соотношение этой части. Чтобы объяснить это, давайте рассмотрим следующий пример:

Пример: Синди хочет купить 8 метров шланга для своего сада. Она пошла в магазин и обнаружила, что там есть катушка со шлангом длиной 30 метров. Однако, она заметила, что на катушке написано, что 60% уже продано. Она должна узнать хватит ли ей оставшегося шланга.

Решение:

В табличке сказано, что

$\frac{Продано\ длина}{Всего\ длина} \times 100 = 60\%$

$Продано\ длина = \frac{60 \times 30}{100} = 18м$

Интересное:  Как Платить За Коммунальные Услуги Через Ерип

Поэтому остаток 30 — 18 = 12м, которого вполне достаточно Синди.

Примеры:

1. Райн любит собирать спортивные карточки с его любимыми игроками. У него есть 32 карточки с игроками бейсбола, 25 карточки с футболистами и 47 с баскетболистами. Каково процентное соотношение карточек каждого спорта в его коллекции?

Решение:

Общее количество карточек = 32 + 25 + 47 = 104

Процентное соотношение бейсбольных карточек = 32/104 x 100 = 30,8%

Процентное соотношение футбольных карточек = 25/104 x 100 = 24%

Процентное соотношение баскетбольных карточек = 47/104 x 100 = 45,2%

Обратите внимание, что если сложить все проценты, то получится 100%, что представляет общее количество карточек.

2. На уроке был математический тест. Тест состоял из 5 вопросов; за три из них давали по три 3 балла за каждый, а за осташиеся два — по четыре балла. Вам удалось правильно ответить на два вопроса по 3 балла и на один вопрос по 4 балла. Какое процентное соотношение баллов Вы получили за этот тест?

Решение:

Общее количество = 3×3 + 2×4 = 17 баллов

Полученные балы = 2×3 + 4 = 10 баллов

Процентное соотношение полученных баллов = 10/17 x 100 = 58,8%

Совет!

3. Вы купили видео игру за \$40. Потом цены на эти игры подняли на 20%. Какова новая цена видео игры?

Решение:

Увеличение цены равно 40 x 20/100 = \$8

Новая цена равна 40 + 8 = \$48

Источник: https://www.math10.com/ru/algebra/procent.html

Проценты

Определение.

Процент — одна сотая часть величины или числа. Обозначается символом «%».

Соотношения между десятичными дробями и процентами

  • Для преобразования десятичной дроби в проценты, ее необходимо умножить на 100.
    Например:   4 = 400%;   0.4 = 40%;   0.04 = 4%;   0.004 = 0.4%.
  • Для преобразования процентов в десятичную дробь необходимо число процентов разделить на 100.
    Например:   500% = 5;   50% = 0.5;   5% = 0.05;   0.5% = 0.005.

Определение.

Сложные проценты — эффект часто встречающийся в экономике и финансах, когда проценты прибыли в конце каждого периода прибавляются к основной сумме и полученная величина в дальнейшем становится исходной для начисления новых процентов.

Наиболее распространенные типы задач на проценты

  • Найти указанный процент от заданного числа.
  • Найти число по заданному другому числу и его величине в процентах от искомого числа.
  • Найти процентное выражение одного числа от другого.

  • Найти число на заданный процент большее (меньшее) исходного числа.
  • Найти число, зная значение числа большего (меньшего) от исходного на заданный процент.
  • Найти сложные проценты.

Все соотношения и формулы, полученные для решения задач с процентами, выводятся из пропорции

Данные задачи на проценты можно записать в виде следующих соотношений:

все      —      100% часть      —      часть в %

которые можно записать в виде пропорции

Используя эту пропорцию можно получить формулы для решения основных типов задач на проценты.

Формулы для решения задач на проценты

  • Формула вычисления процента от заданного числа.
    Если дано число A и необходимо вычислить число B, составляющее P процентов от A, то
  • Формула вычисления числа по его проценту.


    Если дано число B которое составляет P процентов от числа A и необходимо найти значение числа A, то

  • Формула вычисления процентного выражение одного числа от другого.


    Если дано два числа A и B и необходимо определить, какой процент составляет число B от числа A, то

  • Формула вычисления числа, которое больше исходного числа на заданный процент.


    Если дано число A и необходимо найти число B, которое на P процентов больше числа A, то

  • Формула вычисления числа, которое меньше исходного числа на заданный процент.


    Если дано число A и необходимо найти число B, которое на P процентов меньше числа A, то

  • Формула вычисления исходного числа по значению числа, которое больше от исходного на заданный процент.
    Если дано число B, которое на P процентов больше числа A и необходимо найти число A, то
  • Формула вычисления исходного числа по значению числа, которое меньше от исходного на заданный процент.
    Если дано число B, которое на P процентов меньше числа A и необходимо найти число A, то
  • Формула вычисления сложных процентов. где B — будущая стоимость; A — текущая стоимость; P — процентная ставка за расчетный период (день, месяц, год, …);

    n — количество расчетных периодов.

Пример 1.

Найти число B составляющее 5% от числа 20.

Решение:

Ответ: B = 1.

Пример 2.

Найти сколько процентов составляет число 35 от числа 20.

Решение:

Ответ: 175%.

Пример 3.

Найти число, которое на 15% меньше чем 20.

Решение:

20(1 —  15% ) = 20 · 0.85 = 17
100%

Ответ: 17.

Пример 4.

Найти прибыль от 30000 рублей положенных на депозит на 3 года под 10% годовых, если в конце каждого года проценты добавлялись к депозитному вкладу.

Решение: Используем формулу для вычисления сложных процентов:

B = 30000(1 +  10% )3 = 30000 · 1.13 = 39930
100%

прибыль равна
39930 — 30000 = 9930

Ответ: прибыль 9930 рублей.

При изучении процентов вам также будут полезны:

© 2011-2019 Довжик Михаил
Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне support@onlinemschool.com

Источник: https://ru.onlinemschool.com/math/library/percent/percent1/

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *